direct product, p-group, metabelian, nilpotent (class 4), monomial
Aliases: C22×D16, C16⋊2C23, D8⋊1C23, C8.9C24, C23.63D8, C8.54(C2×D4), (C2×C4).94D8, C4.21(C2×D8), (C22×C16)⋊9C2, (C2×C8).262D4, (C2×C16)⋊18C22, (C2×D8)⋊45C22, (C22×D8)⋊14C2, C4.15(C22×D4), C2.24(C22×D8), C22.75(C2×D8), (C2×C8).571C23, (C22×C4).621D4, (C22×C8).541C22, (C2×C4).872(C2×D4), 2-Sylow(GO-(4,17)), SmallGroup(128,2140)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 660 in 220 conjugacy classes, 100 normal (9 characteristic)
C1, C2, C2 [×6], C2 [×8], C4, C4 [×3], C22 [×7], C22 [×32], C8, C8 [×3], C2×C4 [×6], D4 [×20], C23, C23 [×20], C16 [×4], C2×C8 [×6], D8 [×8], D8 [×12], C22×C4, C2×D4 [×18], C24 [×2], C2×C16 [×6], D16 [×16], C22×C8, C2×D8 [×12], C2×D8 [×6], C22×D4 [×2], C22×C16, C2×D16 [×12], C22×D8 [×2], C22×D16
Quotients:
C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], D8 [×4], C2×D4 [×6], C24, D16 [×4], C2×D8 [×6], C22×D4, C2×D16 [×6], C22×D8, C22×D16
Generators and relations
G = < a,b,c,d | a2=b2=c16=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
(1 23)(2 24)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 31)(10 32)(11 17)(12 18)(13 19)(14 20)(15 21)(16 22)(33 52)(34 53)(35 54)(36 55)(37 56)(38 57)(39 58)(40 59)(41 60)(42 61)(43 62)(44 63)(45 64)(46 49)(47 50)(48 51)
(1 35)(2 36)(3 37)(4 38)(5 39)(6 40)(7 41)(8 42)(9 43)(10 44)(11 45)(12 46)(13 47)(14 48)(15 33)(16 34)(17 64)(18 49)(19 50)(20 51)(21 52)(22 53)(23 54)(24 55)(25 56)(26 57)(27 58)(28 59)(29 60)(30 61)(31 62)(32 63)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 35)(2 34)(3 33)(4 48)(5 47)(6 46)(7 45)(8 44)(9 43)(10 42)(11 41)(12 40)(13 39)(14 38)(15 37)(16 36)(17 60)(18 59)(19 58)(20 57)(21 56)(22 55)(23 54)(24 53)(25 52)(26 51)(27 50)(28 49)(29 64)(30 63)(31 62)(32 61)
G:=sub<Sym(64)| (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22)(33,52)(34,53)(35,54)(36,55)(37,56)(38,57)(39,58)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,49)(47,50)(48,51), (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,41)(8,42)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,33)(16,34)(17,64)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,56)(26,57)(27,58)(28,59)(29,60)(30,61)(31,62)(32,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,35)(2,34)(3,33)(4,48)(5,47)(6,46)(7,45)(8,44)(9,43)(10,42)(11,41)(12,40)(13,39)(14,38)(15,37)(16,36)(17,60)(18,59)(19,58)(20,57)(21,56)(22,55)(23,54)(24,53)(25,52)(26,51)(27,50)(28,49)(29,64)(30,63)(31,62)(32,61)>;
G:=Group( (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22)(33,52)(34,53)(35,54)(36,55)(37,56)(38,57)(39,58)(40,59)(41,60)(42,61)(43,62)(44,63)(45,64)(46,49)(47,50)(48,51), (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,41)(8,42)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,33)(16,34)(17,64)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,56)(26,57)(27,58)(28,59)(29,60)(30,61)(31,62)(32,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,35)(2,34)(3,33)(4,48)(5,47)(6,46)(7,45)(8,44)(9,43)(10,42)(11,41)(12,40)(13,39)(14,38)(15,37)(16,36)(17,60)(18,59)(19,58)(20,57)(21,56)(22,55)(23,54)(24,53)(25,52)(26,51)(27,50)(28,49)(29,64)(30,63)(31,62)(32,61) );
G=PermutationGroup([(1,23),(2,24),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,31),(10,32),(11,17),(12,18),(13,19),(14,20),(15,21),(16,22),(33,52),(34,53),(35,54),(36,55),(37,56),(38,57),(39,58),(40,59),(41,60),(42,61),(43,62),(44,63),(45,64),(46,49),(47,50),(48,51)], [(1,35),(2,36),(3,37),(4,38),(5,39),(6,40),(7,41),(8,42),(9,43),(10,44),(11,45),(12,46),(13,47),(14,48),(15,33),(16,34),(17,64),(18,49),(19,50),(20,51),(21,52),(22,53),(23,54),(24,55),(25,56),(26,57),(27,58),(28,59),(29,60),(30,61),(31,62),(32,63)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,35),(2,34),(3,33),(4,48),(5,47),(6,46),(7,45),(8,44),(9,43),(10,42),(11,41),(12,40),(13,39),(14,38),(15,37),(16,36),(17,60),(18,59),(19,58),(20,57),(21,56),(22,55),(23,54),(24,53),(25,52),(26,51),(27,50),(28,49),(29,64),(30,63),(31,62),(32,61)])
Matrix representation ►G ⊆ GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 13 | 11 |
0 | 0 | 6 | 13 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[1,0,0,0,0,16,0,0,0,0,13,6,0,0,11,13],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,1] >;
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 4A | 4B | 4C | 4D | 8A | ··· | 8H | 16A | ··· | 16P |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 16 | ··· | 16 |
size | 1 | 1 | ··· | 1 | 8 | ··· | 8 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | D4 | D4 | D8 | D8 | D16 |
kernel | C22×D16 | C22×C16 | C2×D16 | C22×D8 | C2×C8 | C22×C4 | C2×C4 | C23 | C22 |
# reps | 1 | 1 | 12 | 2 | 3 | 1 | 6 | 2 | 16 |
In GAP, Magma, Sage, TeX
C_2^2\times D_{16}
% in TeX
G:=Group("C2^2xD16");
// GroupNames label
G:=SmallGroup(128,2140);
// by ID
G=gap.SmallGroup(128,2140);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,-2,-2,253,1684,851,242,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^16=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations